Cadence IC 设计基本流程

(V2.0)

By 王午悦

2012年5月

日录

	启动与新建	2
	1.建立个人工作库	2
	2. 新建毕元(Cellview)	4
二.	编辑电路图	5
	2. 元件参数设置	
	3.器件连线	
	4.放置端口	
	5.检查与保存	14
Ξ.	创建 symbol	14
四.	电路仿真	
	,於古江拉人加	
	1.仍具坏境介绍	
	2. 仂具尖型选择	
	3. 设直伤具受重	
	4.结果浏览器	
	5. 差分放大器仿真实例	
	瞬态分析	
	直流分析	
	交流分析(AC Analysis)	

版权©2012,版权所有,侵犯必究!

1

一. 启动与新建

Cadence 是一个大型的 EDA 软件,它几乎可以完成电子设计的方方面面,如 ASIC 设计、FPGA 设计和 PCB 板设计等。在仿真、电路图设计、自动布局布线、版图设计及验证等方面都具有绝对的优势。

下面我们用一个差分放大器的设计流程为例介绍 Cadence 的一些基本操作。

在正确安装 cadence 后,登陆工作站,打开终端。在终端中输入 命令 icfb&,会出现 Cadence 初始界面,并会打开 candence 的命令 行窗口 (Command Interpreter Window,CIW) 如图 1.1 所示。

1.建立个人工作库

	icfb - Log: /home/fan	nmm/CDS.log	×
File Tools Options			Help 1
"band schematic" saved. "band schematic" saved. "band schematic" saved.			
		100	
Ι			
mouse L:	M :	R:	
>			

图 1.1 ciw 窗口

建立个人工作库有两种方法:

- (1) File \rightarrow New \rightarrow Library
- (2) Tools → Library Maneger 打开库管理器

此处,我们采用方法二来建立个人工作库。打开 Library Maneger

窗口如图 1.2 所示:

Library Manag	ger: WorkArea: /home/fanmm/j	proj/nt25l90	<u>XIII X</u>
<u>File Edit View Design Mar</u>	lager		<u>H</u> elp
🔲 Show Categories 📃 Show	v Files		
Library	Cell	View	
I	Ĭ.	Ĭ	
25159 25159lyq 25159lyq1 25159lyq2 E_M_huangy_rw1 G_zhangr_rw1 L_H_wenxx_rw1 analogLib bakeup_project1 basic cdsDefTechLib fsimulation k_chengbs_rw1 tsmc13rf zhusy_25L901			A DI INDIV
Messages		5	2
but was defined in Log file is "/home/fanmm/pr 1	libFile ′/home/fanmm/proj/r oj/nt25190/libManager.log.1	nt25190/cds.lib' for Lib .".	'Ε. Δ

图 1.2.Library Manager 窗口

窗口中第一栏显示出了当前已有的库。点击File → New →

Library 打开 New Library 窗口如图 1.3 所示:

×	New Library	×
Γ	- Library	
	Name	
	Directory	
	· · .	
	/home/fanmm/proj/nt25190/j	
	– Design Manager –	
	Use NONE	
	Use No DM	
_		
	OK Apply Cancel Help	

版权©2012,版权所有,侵犯必究!

3

在 Name 栏中输入自己的工作库名称,如 mylib。然后点击 OK,则会弹出 Technology File For New Library 窗口如图 1.4 所示:

在窗口中有提示说明,若**需要做版图设计则连接到**一个 new techfile(新的技术文件), <mark>否则就选 Don't need a techfile</mark>。在 此,我们选择选项 Don't need a techfile 点击 OK,点击 OK 确认后 则完成了建立新工作库的操作。

2. 新建单元(Cellview)

和前文所述类似,工作单元(Cellview)的新建也有两种方法:

(1) 在命令行窗口中点击 File → New → CellView

(2) 通过库管理器新建

在此我们采用第一种方法,出现 Create New File 窗口如图 1.6 所示:

Create New File							
ОК	Cancel	Defaults		Help			
Library Na	ume 🗕	mylib	4				
Cell Name	d	iff	11	14			
View Nam	e s	chematič					
Tool	C	omposer-S	Schemati	C =			
Library pa	th file						
/home/fa	num/proj	j/nt25190	/cds.li	bě.			

在Library Name 中选择自己的工作库,在Cell Name 栏输入原 理图的名称,如diff。在Tool 栏选择Composer-Schematic 后点击 OK,此时会弹出电路编辑的主界面,新建工作完成。

. 编辑电路图

如图 2.1 所示就是电路编辑界面

图 2.1

5

图 1.6

1.添加器件

在 Cadence 中,添加器件有三种途径:

(1) 在菜单栏中单击 Add → Instance;

(2) 点击工具栏中的 Insrance Q 图标;

(3) 使用快捷键 i;

以添加一个 NOMS 为例,在发出添加命令后会出现 Add Instance 窗口如图 2.2 所示:

∽ ////	Add Instance	e 🛛 🕹
Hide	Cancel Defaults	Help
Library		Browse
Cell	Ĭ.	
View	symboli	
Names	Ĭ.	
Array	Rows 1	Columns 1
Rota	te Sideways	Upside Down
	屋りり	Jon 1

在Library 栏出点击 Browse 弹出库浏览器如图 2.3 所示:

6

Library E	Browser - Add I	nstance = =
Library	Cell	View
janalogLib	nmos4	[symbol
E_M_huangy G_zhangr_r I_wangjk_r L_H_wenxx_ analogLib bakeup_prc basic cdsDefTeck fsimulatic k_chengbs_	nbsim nbsim4 njfet nmes nmes4 nmos nmos4 nodeQuant: noise npn	ams auCdl auLvs cdsSpice hspiceD hspiceS spectre spectreS symbol
Close	Filters	Help
	E o o	

在库浏览器中依次点击 analogLib → nmos4 → symbol 后点击

close。此时 Add Instance 窗口会如图 2.4 所示:

			Add Instan	ice	
Hide	Cancel	Default	s		H
Library	analogL	ib			Browse
Cell	nmos4				1257 1
View	symbolį				
Names					1-196
Array		Rows	1 <u>ľ</u>	Columns	; <u>1</u>
Rotate	e	S	ideways	1	Upside Down
Model na	me		Ĭ		
Multiplier			Ľ		
Width			Ĭ.		
Length			Ĭ		
Drain diff	usion area	a			
	1000		Y		

点击 Hide 隐藏当前窗口。电路编辑界面上会出现一个可以随鼠标移动的 noms,此时按下快捷键 r 可以转动器件,按下 R 可以将器

版权©2012,版权所有,侵犯必究!

7

件镜像。在合适地方单击鼠标左键将器件放下。若要添加更多 noms 可继续单击,若不再添加 noms 器件,则按下 Esc 退出添加命令。

建议在放置器件时就将器件的模型名称、并联个数、宽、长等信 息一次性输入。

按同样的方法可以添加所有电路器件如 poms, vdd, gnd 等如图 2.5 所示:

图 2.5

注: 1. vdd 与 gnd 仅是全局电源与地标识,并不是独立电源器件, vdd 并不能提供电源。仿真时必须有 gnd, 否则仿真不收敛。

2. 为了以后仿真方便,此处可直接从本机的工艺库中调用器件。

2. 元件参数设置(也可在放置器件时完成)

设置元件参数有三种方法:

(1) 在菜单栏点击 Edit → Properties → Objects 然后选择
 要修改的元件;

(2) 选中要修改参数的器件,点击工具栏中的

图标;

(3)选中要修改参数的器件,点击快捷键 q;

在此,我们还是以一个 noms 器件为例:

选中一个 noms 器件,其周围会出现一个白框,之后点击快捷键 q,弹出参数设置窗口如图 2.6 所示:

Apply To only cur	rent Instance	
Show syst	em 🔳 user 📕 CDF	
Browse	Reset Instance Labels Display	
Property	Value	Display
Library Name		off _
Cell Name	nmos4	off =
View Name	symbol	off =
Instance Name	MI	off 🖃
	Add Delete Modify	
CDF Parameter	Value	Display
Model name	Ĭ.	off 🖃
Multiplier	I.	off 😑
Width	I.	off =
Length	Ĭ.	off 🛁
Drain diffusion area	Ĭ.	off 😑
Source diffusion area	Хи.	off 🗕
Drain diffusion periphery	¥.	off =
Source diffusion peripher	y I	off =
Drain diffusion res squar	es L	off 🗕
Source diffusion res squa	ares 🗓	off 🗕
Drain diffusion length	Ĭ	off 🖃
	P. ashWithisstPressents()	

窗口中,我们需要输入 noms 的 model name 和栅长与栅宽。这 里我们设置栅长为 0.7u, 栅宽为 4u,均为常量。此处也可使用函数 pPar("wn")或直接在对应栏中输入字母 wn 将栅长与栅宽设置为变 量 wn。完成参数的修改工作。

注:为保证仿真, MOS 器件必须输入其模型名称。本次课程设计为大家提供了两种工艺,添加步骤与路径为:

Library Manager---Edit---Library path 后出现 Library path Editor 窗口。点击窗口中的 Edit--Add Library 出现 Add Library 窗口如下图所示

			Add Libr	rary	×		
		Library					
	'	Name <u>I</u>					
		Use Mappell	Name		\sim		
		Directory		Library			
	5		directory)				
	1	dzsyzx huanggang		144	10		
	1	lost+found usr1					
	1	usr2 usr3			194		
	1	usr4 usr5					
	1	usr6 usr7					
	1	usr8					
		d					
		Proint Manage					
		Design Manage	er				
		1 Use No DM					
		ок	Apply	Cancel	Help		
工艺库路	径为						
c18mmrf	/usr/Li	ibrarv/:	smic18mmr	f 1P5M 20	0902271	408/smic18mmrf	
-							_
根据工艺属	车路径进行	添加,	添加完成	え后点击 C	к在L	ibrary path E	ditor
的 File 选	顶 山占击 (Save As	选 価	言成添加			
天加今代日	「「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、」、「」、」、「」、」、「」、「			1山太毛丁	士库	加工团的二	
际加元风加	」可任 LIDra	ary ivian	lager ⊠ ⊢	1甲笡有 1	-乙/牛,	如下图別小:	
	Silo Edit 100	Library Mar	nager: WorkAre	a: /home/wangwy	/		
		w <u>D</u> esign Mai	u Filos			Teih	
	_ Library		- Cell	View			
	Ismic18mmrf		Innvt33	1			
	US_8ths		n18	△ Ultra	Sim		
	analogLib		n18_ckt_rr n33	ads			
	cdsDefTechLib		n33_ckt_rf ndio18	auCdl			
	functional		ndio33	hspic	eD		
	rfLib		nmvt33	layou	t		
	smicl8mmrf		nndio18 nndio33	spect	re 1		
			nnt18 nnt33				
			npn18				
			npn18_W2L2 npn18_W5L5				
			npn18_W10L10				
			npn33_W2L2	V			
	Messages —						
	 Log file is ",	/home/wangwy/l	ibManager.log".				
	Log file is ", I	/home/wangwy/l	ibManager.log".				

也可以通过直接编辑 cds. lib 添加工艺库。

元件添加完成后的图形如图 2.7 所示:

sm

口中

上。

3.器件连线

添加器件连线有三种方法:

(1) 点击菜单栏 Add → wire (narrow);

(2) 点击工具栏中的 【】 图标;

(3) 点击快捷键 w (普通导线连接) 或 W (总线连接);

选择连线命令后可对器件进行连线,在没有点击 Esc 退出连线命

令之前,可以继续连线。连线结束后点击 Esc 退出连线命令。点击快捷键 1 可以对连线命名,可以将命名移动到对应连线附近。如图 2.8 所示:

4.放置端口

完成电路图的基本编辑工作后,还需要放置 I/O 端口标明电路的输入输出。放置端口有三种方法:

(1) 菜单栏单击 Add → Pin;

(2) 单击工具栏图标

(3) 使用快捷键 p;

给出放置命令后会出现 Add Pin 窗口如图 2.9 所示:

• /////////////////////////////////////		Add Pin	
Hide Cance	I Defaults		Help
Pin Names	vin1	177	
Direction	input 🖃	Bus Expansio	n 🔶 off 🔷 on
Usage	schematic 🗆	Placement	$igstarrow$ single $ \diamondsuit$ multiple
Property Name Default Net Name	»I		
Font Height	0 0682	Fout Style	stick =
Justification	lowerCenter _	Bibry Style	fixed offset =
Rotate		Sideways	Upside Dowr

若放置输入端口则在 Pin Name 栏输入 Vin,在 Direction 栏选 择 input 然后点击 hide,将输入端口放到输入线上。同理可添加输 出端口,注意 Direction 栏最好先选择 output 在输入端口名。最终 完成的电路图如图 2.10 所示。

图 2.10

5.检查与保存

单击菜单栏 → Check and Save 或者键入快捷键大写的 X,可以 对电路进行检查并存储。检查后如果有错会在 CIW 窗口上显示错误或 警告信息。如果没错则窗口如图 2.11 所示。电路编辑工作至此完成。

	,	
File Tools Options		Help 1
Extracting "diff schematic" Schematic check completed wit "mylib diff schematic" saved.	h no errors.	
mouse L: mouseAddPt()	M: schHiMousePopUp()	R: Rotate 90
Use the options form to supply ter	minal names for the pins.	
	图 2.11	

三. 创建 symbol

打开上面画好的差分放大器

Composer 窗口菜栏 → Design → Create CellView → From Cellview, 弾出 Cellview from Cellview 窗口。如图 3.1 所示:

 ✓ 	Cellv	view From Cellview	×
OK Cancel De	efaults Apply		Help
Library Name	mylib		Browse
Cell Name	diff		
From View Name	schematic =	To View Name	symbol
		Tool / Data Type	Composer-Symbol 😑
Display Cellview	1		107
Edit Options			

图 3.1

信息都已基本填好,点击 0K 键,弹出创建 symbol 窗口如图 3.2 所示,软件以自动识别好输入输出端口。

✓		Symbol Gene	ration Options			
OK Cancel	Apply					Helj
Library Name		Cell Name	110	View Name		
mylibį		diff	HI	symbol		
Pin Specificatio	ins				Attrib	utes
Left Pins	vin1 vin2 <u>]</u>			1 - 2	Li	ist
Right Pins	vout <u>i</u>			47		st
Top Pins						st
Bottom Pins					Li Li	ist
Load/Save 🔄	Edit Att	ibutes 🔄	Edit Labels	Edit	Properties	
		図 2	0			

点击 OK,显示出 symbol 编辑窗口如图 3.3 所示:

图 3.3

注: 上图中漏掉了电路中的 Bias 这一输入信号的引脚。会出现警告,可以在图 3.2 中 Left Pin 项 内加入 Bias 端口,或可以在图中直接添加 Bias 端口,消除警告。

默认的 Symbol 是一个比较大的矩形。对于运放,我们习惯用一个三角形来表示。选中绿色矩形框点 delete, 然后 Add → Shape →

Polygon, 在刚才矩形框的位置画一个三角形。鼠标在三个端点点 3 次即可。再把图中的输入输出端口以及 partname 和 instanceName 移 动到合适位置。如图 3.4 所示:

● 画好的 Symbol 需要检查保存。Design → check and save,检查结果显示在 CIW 窗口中。

四. 电路仿真

1. 仿真环境介绍

ADE 是 Cadence IC 的图形化仿真环境。可以用如下方式打开:

(1).可以在 CIW 窗口中选择菜单 Tools → Analog
 Environment Simulation,这样打开的 ADE 窗口中没有指定进行仿真的电路。

(2).在电路编辑器中选择菜单 Tools → AnalogEnvironment,这样打开的 ADE 窗口中已经设置为仿真调用 ADE 的电

路图。仿真窗口界面如图 4.1 所示:

Status: Ready	T=27 C Simulator: spectre	5
Session Setup Analyses	Variables Outputs Simulation Results Tools	Help
Design	Analyses	Ł
Library mylib Cell diff View schematic	# Type Arguments Enable	
Design Variables	Outputs	[ŧ
# Name Value	# Name/Signal/Expr Value Plot Save March	600 600 M
	Plotting mode: Replace =	+ .

此处要设置工艺模型。在菜单栏中选择 setup → model

libraries,则出现设置工艺模型窗口如图 4.2 所示:

orary Setup	
	Hel
Section	Enable
s/tsmc13rf.scs	Disable
	Up
	Սլ։ Down
Section (opt.)	Uji Down
Section (opt.)	Uı Down
	Section Section

图 4.2

在这个窗口中可以在 Model Library File 栏输入需要使用的模型库文件名,在 Section 栏输入该模型文件中需要的段。

2. 仿真类型选择

在 Cadence 中,根据不同的需要,可以对电路进行不同类型的分析。常用的有 DC 分析、AC 分析、瞬态分析、噪声分析、零极点分析等。

设置仿真类型时,可以点击菜单 Analyze → Choose 或点击图 示。不同的仿真类型对应着不同的参数设置,请大家结合具体仿 真内容填写。类型选择窗口如图 4.3 所示:

Choosin	ig Analyses	- Virtuoso®	Analog Desi	gn Enviro	nn
OK Can	cel Default:	s Apply			He
Analysis	🔶 tran	⇔dc	\diamondsuit ac	🔷 noise	
	⇔xf	🔷 sens	\Diamond dcmatch	🔷 stb	
	\diamondsuit pz	\diamondsuit sp	🔷 envip	🔷 pss	
	\diamondsuit pac	🔷 pnoise	⇔pxf	\diamondsuit psp	
	\diamondsuit qpss	🔷 qpac	🔷 qpnoise	🔷 qpxf	
	🔷 qpsp				
	Т	ransient Analy	/sis	SAL.	
Stop Time	I				
Accuracy	Defaults (er	rpreset)			
_ conse	ervative	moderate	liberal		
Enabled	J			Options	i
		团本の			

3.设置仿真变量

由于电路中作任何改变之后都需要保存并检查完整性,所以在对 电路进行仿真时,经常在电路中定义一些变量作为器件的参数。例如 可以将一个 MOS 管的宽度定义为 w=W1,则W1 就成为一个设计变量。 这些设计变量在仿真中都需要赋值,否则仿真不能进行。一般设置方 法是: 在菜单上选择 Variables → Copy from Cell View 则电路图

中的设计变量名都回被截取进 ADE 中,并在 ADE 窗口中的变量栏中 列出。此时双击界面中任意一变量,会出现变量编辑窗口,在窗口中 可以对变量进行相关的编辑工作。具体操作可见仿真实例。

4.结果浏览器

Results Browser 是一个非常实用的工具,可以在 ADE 窗口中的 Tools 选项中找到。通过它可以读取所有电路节点的电压和端口电流 的仿真结果。并且可以对数据进行预处理,在合适的窗口类型中显示。 此外,还提供了数据比较,Y vs Y 功能。具体使用后面会有详细介 绍。通过 Results Browser 可以实现以下功能:

[1] 察看仿真结果;

[2] 察看仿真环境设置;

[3] 察看器件工作点特性;

[4] 将结果在特殊的图标格式中显示,例如阻抗图和导纳图;

[5] 将仿真结果中的表达式直接送入到"Calculator"的缓存中。

通过 Tools 选项可以打开该窗口如图 4.4 所示:

19

5. 差分放大器仿真实例

这里,我们以最常用的瞬态、直流、交流分析为例为大家介绍仿真的一般流程。

注: 仿真时不能直接使用 analogLib 库,本次仿真使用 0.13um 库模型。故应对前面添加的器件在 Library Name 处修改仿真库如图 4.5 所示:

20

		Edit Object Properties		
ок	Cancel Apply	Defaults Previous Next		Н
Apply Show	To only cu	rrent → instance → tem ■ user ■ CDF	72	
_	Browse	Reset Instance Labels Display	-17.7	
	Property	Value	Display	
	Library Name	tsmc13rf	off 🖃	
	Cell Name	pmos3vį	off 💷	
	View Name	symbol	off 🖃	
	Instance Name	M4	off 💷	
-		Add Delete Modify	•	
	CDF Parameter	Value	Display	
Model	I Name	pch_33	WK /	off =
Multip	olier	l	7.87	off 🗕
Lengti	h	300n M <u>í</u>	140	off 🗆
Total	Width	2u M <u>í</u>	_	off 💷
Finger	r Width	2u M <u>í</u>	98	off 💷
Finger	rs	1		off _
Thres	hold	300n M <u>í</u>		off 💷
Apply	Threshold			off 💷
Gate	Connection	🔶 None 😞 Top 🔷 Bottom 🔷 I	Both 🔷 Alternate	off _
	lotal Width	160n M	DALLER MARK	off

瞬态分析

瞬态仿真分析是在给定的输入激励下,在设定的时间范围内计算 电路的时域瞬态响应性能。要验证设计电路的稳定性,速度,精确度 等问题必须经过各种情况下的瞬态分析才能做出正确的判断。在瞬态 仿真的参数设置过程中,主要是在仿真精度和仿真速度之间做出合理 的折衷。

首先给 vdc 加一直流电源。瞬态仿真时输入端各加一相位相反的 方波信号源,加好后,点击快捷键 q 设置信号源参数,如图 4.5 所示:

v		Edit Object Properties	
ок	Cancel Apply	Defaults Previous Next	He
Apply Show	To only c	urrent → instance → stem ■ user ■ CDF	
	Browse	Reset Instance Labels Display	777
	Property	Value	Display
	Library Name	analogLib	off 💷
	Cell Name	vpulse	off =
	View Name	symbol	off =
	Instance Name	, V <u>ž</u>	off 🖃
5		Add Delete Modi	fy
	User Property	Master Value Local Valu	e Display
	lvsignore	TRUE	off =
	CDF Paramete	r Value	Display
AC ma	agnitude	Ĭ.	off 🖃
AC ph	ase	Ĭ.	off =
DC vo	ltage	Ĭ.	off 💷
Voltag	je 1	1 <u>.</u> V	off =
Voltag	je 2	3į̃. V	off =
Delay	time	Ĭ.	off
Rise t	ime	Ĭ.	off =
Fall tir	me	Ĭ.	off —
Pulse	width	5ujis	off =
Period		10 už s	off 💷

加好信号源后的电路如图 4.6 所示:

22

注:此处仿真时可以直接使用前面所创建的 symbol,对 symbol 模型添加信号源进行仿真,更加清晰方便。

此时调出仿真界面,在菜单栏中的 Setup 中选择 model library,

эк	Cancel	Defaults	Apply				1	<u> </u>	H
Disabi	le Model	Library I	File				2	Section	Enable
e	-backup/1	t013mmsp0	01k1_13a/t	smc13r	f//mode	ls/tsmc1	Brf.scs		Nieshte
									2/200390
									Uli
									Uli Down
odel Li	ibrary File							Section (opt.)	Uji Down
odel Li	ibrary File							Section (opt.)	Up Down

弹出窗口如图 4.7 所示:

图 4.7

在此选择仿真库。然后点击 Analysis → choose 弹出仿真类型 选择界面,选择瞬态仿真 tran,填写 stop time,并确定 Enable 处 23

于选中状态后点击 OK, 如图 4.8 所示:

ок	Cancel	Defaults	Apply		Hel
Analys	sis 🖣	tran	⇔dc	⇔ac	🔷 noise
		xf	🔷 sens	\Diamond dcmatch	🔷 stb
	\sim	pz	🔷 sp	🔷 envip	⇔pss
	<	pac	🔷 pnoise	⇔pxf	⇔psp
		qpss	\diamondsuit qpac	\diamondsuit qpnoise	
	1	apsp			
		-1111			~ ~
Stop T	īme	50u	ansient Analy	ysis	
Stop T Accura C	īme acy Def onserva	Tra 50u aults (err) ative n	ansient Analy preset) noderate	/sis liberal	

然后于 ADE 窗口, Output → To Be Plotted → Select On Schematic,这样会弹出我们画的电路图。然后分别单击输入和输出 两条线 IN 和 OUT。(若是点击节点则是查看流过该节点的电流)如本 例选中差分电路中的输入输出后,ADE 窗口的 outputs 栏会填入相应 信息,如图 4.9 所示:

图 4.8

Status: Selecting outpu	ts to be plotted T=27 C Simulator: spect	re
Session Setup Analyses	Variables Outputs Simulation Results Tools	Hel
Design	Analyses	Ł
ibrary mylib	# Type Arguments Enable	⊐ AC
Cell diff Aiew schematic	1 tran 0 50u yes	
Design Variables	Outputs	R
[#] Name Value	# Name/Signal/Expr Value Plot Save March	
	1 vout yes allv no 2 vin1 yes allv no 3 vin2 yes allv no	000 000
	Plotting mode: Replace =	ta

设置好后点击 接钮则可观察到输入输出端的电压波形。如图 4.10 所示:

直流分析 (DC Analysis)

直流分析是其他所有仿真的基础。在"Tran Analysis"、"AC Analysis"等分析的过程中,首先就是先要计算直流工作点。固掌握 电路的直流分析非常重要。

在这里我们以差分电路的共模输入范围为例进行直流分析。

连接好仿真电路后,我们将信号源设置为变量,设置变量的方法 前面有介绍。之后,仿真环境菜单栏->Variables->Edit,或者直接 点击右侧的工具栏中的 Edit Variables 按钮,弹出窗口。击点按钮 "Copy From",就会列出我们前面在测试电路中添加的变量 vin。选 中该变量,我们设置一个初始值 1。如图 4.11 所示:

💌 Edi	iting Des	sign Var	iables Virtuoso® An	alo	g Design	Environmei 💌
ок	Cancel	Apply	Apply & Run Simulatio	n	1 -	Help
	s	elected	Variable	Т	able of De	sign Variables
Name	ſ	vin		#	Name	Value
Value ((Expr)	1		1	vin	
Add	Delete	Change	Next Clear Find			
Cellvie	w Variab	les Co	by From Copy To			
			图 4.11			-

点击 ok。然后在 ADE 窗口中选择 Analysis → Choose,选择直流仿真 dc,填写相关仿真信息如图 4.12 所示:

26

	Cancel	Defaults	Apply		H
Analy	sis <	tran	🔶 dc	⇔ac	🔷 noise
		xf	🔷 sens	\diamond dcmatch	⇔stb
	<	>pz	🔷 sp	🔷 envip	⇔pss
		pac	\Diamond pnoise	⇔pxf	⇔psp
		dbss	\diamondsuit qpac	\diamondsuit qpnoise	◇ qpxf
	~	dbsb			
			DC Analysis	s	
Save	DC Ope	rating Poi	nt 🗌		
	emperat)esign Va Compone	ture ariable nt Parame	Variab eter	le Name vir	i Variable
	Temperat Design Va Compone Nodel Pa	ture ariable nt Parame rameter	Variab eter	le Name vir	() Variable
U T U D C O N Swee Swee Swee Swee	Temperat Design Va Compone Aodel Pa Hodel Pa P Range Start-Stu Center-S	ture ariable nt Parame rameter 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Variab eter	le Name vir Select Design	Variable
□ T □ C □ N Swee ♦ S ♦ C	Temperat Design Va Compone Aodel Pa Hodel Pa Ep Range Start-Stu Center-S Ep Type	ture ariable nt Parame rameter ameter p p span	Variab eter	Select Design	t Variable
T D C M Swee Swee Auto	Temperat Design Va Compone Aodel Pa P Range Start-Sta Center-S P Type Domatic	ture ariable nt Parame rameter op St	Variab eter	select Design	Variable
T T D D C C C C C C C C C C C C C C C C	Temperat Design Va Compone Aodel Pa P Range Start-Sta Center-S P Type Domatic	ture ariable nt Parame rameter op St op St	Variab eter	select Design	Variable

置完成后点击 OK, 按前述方法选择要观察到信号, 之后点击仿 真按钮得到仿真波形如图 4.13 所示:

另外如果在选择直流时(图 4.12)选中了 save DC operating point 选项,则可在 ADE 窗口的 Restual 选项中查看电路的直流工作 点。

交流分析(AC Analysis)

交流小信号分析是用来计算电路的小信号频率响应特性。在此我 们以差分电路的位裕度仿真为例。首先加相应的信号源,加好后选择 交流仿真选项,在频率设置时注意不要从0开始,如图4.14所示:

🔽 Cho	oosing	Analyses	Virtuoso®	Analog Desi	gn Environn [
ок	Cancel	Defaults	Apply		Help
Analy	sis	tran xf pz pac qpss qpsp	dc sens sp pnoise qpac	 ♦ ac ♦ dcmatch ♦ envlp ♦ pxf ♦ qpnoise 	noise stb pss psp qpxf
			AC Analysi:	S	
Swee F D T C M	p Varial requenc esign V empera compone lodel Pa	ole sy ariable ture nt Param rameter	eter		1#L 2
Swee Swee Auto Add S	p Range Start-St enter-S p Type omatic	e op S pan Points	itart <u>1</u>	Stop	30
Enabl	ed 🔳				Options

设置完成后点击 OK。然后开始仿真,仿真结束后,可以通过 ADE 窗口中 Results → Direct plots 观察仿真结果,也可以通过 Tools 中的 Results Browse 观察,此处我们采用第二种方法:调出 Results Browse 窗口如图 4.15 所示:

Results Browser							
<u>File Settings Tools H</u> elp							
🚔 💹 🗐 🕀 🖳 🚍 Default	👻 WPhase 💌 Append 🔍 💌						
Location ~/simulation/diff/spectre/schematic/psf							
/home/fanmm/simulation/diff/ tran-tran finalTimeOP-info ac-ac dcOp-dc dcOpInfo-info modelParameter-info element-info outputParameter-info designParamVals-info variables	VO/PLUS V1/PLUS V2/PLUS V3/PLUS net38 net41 net52 net035 vdd! vin1 vin2						
>	cadence						

选择 ac-ac 项,在器件参数设置窗口中可以查看输出线的编号, 在上图红框选中处选择要查看的结果类型,如增益,相位等。黄框处 可查看图形显示形式。双击该线编号,便会出现相应的图形。此处我 们观察差分电路的相位裕度,则选择增益与相位两项进行观察,如图 4.16 所示:

在图形显示窗口菜单栏中的 Marker 选项中可以对图形中的坐标 进行标记读取,从而可以分析出相位裕度的大小,如上图所示,该电 路的相位裕度约为 87 度,在运行时电路速度有可能较慢,可以通过 改变管子的参数进行调整。

在分析结果时也可用蓝框中的选项,可以完成输出结果的差值分析,输入到计算器和 Y vs Y 功能等。大家可以根据实际需要进行选择。

注:以上只是对 Cadence 软件 IC 设计流程的基本操作的介绍, Cadence 在电路设计方面还有很多强大的功能,大家在实际使用时可 以对其进行进一步的学习。